Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Virol ; 97(3): e0165022, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2246712

ABSTRACT

Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Humans , COVID-19/virology , Cryoelectron Microscopy , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virion/genetics , Virion/pathogenicity , Gene Expression Regulation, Viral/genetics
2.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1554804

ABSTRACT

In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.


Subject(s)
MicroRNAs/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , COVID-19/genetics , Computational Biology/methods , DNA Viruses/genetics , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , RNA, Viral/genetics , Sequence Homology
3.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: covidwho-1438746

ABSTRACT

SARS-CoV-2, the etiologic agent at the root of the ongoing COVID-19 pandemic, harbors a large RNA genome from which a tiered ensemble of subgenomic RNAs (sgRNAs) is generated. Comprehensive definition and investigation of these RNA products are important for understanding SARS-CoV-2 pathogenesis. This review summarizes the recent progress on SARS-CoV-2 sgRNA identification, characterization, and application as a viral replication marker. The significance of these findings and potential future research areas of interest are discussed.


Subject(s)
COVID-19/genetics , Gene Expression Regulation, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19/metabolism , Gene Expression/genetics , Genome, Viral/genetics , Genomics/methods , Humans , Pandemics , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/pathogenicity , Virus Replication
4.
Int J Biol Sci ; 17(8): 2080-2088, 2021.
Article in English | MEDLINE | ID: covidwho-1271049

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a persistent global threat. The transmission of SARS-CoV-2 is wide and swift. Rapid detection of the viral RNA and effective therapy are imperative to prevent the worldwide spread of the new infectious disease. Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR)- CRISPR-associated protein (Cas) system is an RNA-directed adaptive immune system, and it has been transformed into a gene editing tool. Applications of CRISPR-Cas system involves in many fields, such as human gene therapy, drug discovery and disease diagnosis. Under the background of COVID-19 pandemic, CRISPR-Cas system shows hidden capacity to fight the emergency in many aspects. This review will focus on the role of gene editing in COVID-19 diagnosis and treatment. We will describe the potential use of CRISPR-Cas-based system in combating COVID-19, from diagnosis to treatment. Furthermore, the limitation and perspectives of this novel technology are also evaluated.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/therapy , CRISPR-Cas Systems , Gene Editing/methods , Gene Expression Regulation, Viral/genetics , RNA, Viral/analysis , SARS-CoV-2/genetics , Animals , Fluorometry/methods , Forecasting , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Mice , Mice, Transgenic , Models, Animal , Molecular Targeted Therapy , Nasopharynx/virology , Oropharynx/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
5.
PLoS Biol ; 19(3): e3001158, 2021 03.
Article in English | MEDLINE | ID: covidwho-1156073

ABSTRACT

Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Viral/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Chlorocebus aethiops , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferons/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Species Specificity , Temperature , Vero Cells , Virus Replication/drug effects , Virus Replication/genetics
6.
Cells ; 9(10)2020 10 19.
Article in English | MEDLINE | ID: covidwho-962878

ABSTRACT

Coronaviruses are able to establish persistence. However, how coronaviruses react to persistence and whether the selected viruses have altered their characteristics remain unclear. In this study, we found that the persistent infection of bovine coronavirus (BCoV), which is in the same genus as SARS-COV-2, led to alterations of genome structure, attenuation of gene expression, and the synthesis of subgenomic mRNA (sgmRNA) with a previously unidentified pattern. Subsequent analyses revealed that the altered genome structures were associated with the attenuation of gene expression. In addition, the genome structure at the 5' terminus and the cellular environment during the persistence were responsible for the sgmRNA synthesis, solving the previously unanswered question regarding the selection of transcription regulatory sequence for synthesis of BCoV sgmRNA 12.7. Although the BCoV variants (BCoV-p95) selected under the persistence replicated efficiently in cells without persistent infection, its pathogenicity was still lower than that of wild-type (wt) BCoV. Furthermore, in comparison with wt BCoV, the variant BCoV-p95 was not able to efficiently adapt to the challenges of alternative environments, suggesting wt BCoV is genetically robust. We anticipate that the findings derived from this fundamental research can contribute to the disease control and treatments against coronavirus infection including SARS-CoV-2.


Subject(s)
Coronavirus, Bovine/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Animals , Betacoronavirus/genetics , Cattle , Cell Line , Computational Biology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Transcription, Genetic/genetics
7.
Virus Res ; 283: 197976, 2020 07 02.
Article in English | MEDLINE | ID: covidwho-46070

ABSTRACT

An outbreak of atypical pneumonia caused by a novel Betacoronavirus (ßCoV), named SARS-CoV-2 has been declared a public health emergency of international concern by the World Health Organization. In order to gain insight into the emergence, evolution and adaptation of SARS-CoV-2 viruses, a comprehensive analysis of genome composition and codon usage of ßCoV circulating in China was performed. A biased nucleotide composition was found for SARS-CoV-2 genome. This bias in genomic composition is reflected in its codon and amino acid usage patterns. The overall codon usage in SARS-CoV-2 is similar among themselves and slightly biased. Most of the highly frequent codons are A- and U-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. Significant differences in relative synonymous codon usage frequencies among SARS-CoV-2 and human cells were found. These differences are due to codon usage preferences.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Codon Usage/genetics , Communicable Diseases, Emerging/virology , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Genomics , Amino Acids/genetics , Animals , Betacoronavirus/isolation & purification , China/epidemiology , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Evolution, Molecular , Ferrets/virology , Humans , Mutagenesis/genetics , Open Reading Frames/genetics , SARS-CoV-2 , Viverridae/virology
SELECTION OF CITATIONS
SEARCH DETAIL